SYNTHESIS OF A BRIDGED HOMO [15] ANNULENIUM ION

Haru Ogawa and Iwao Tabushi

Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812, Japan Hidefumi Kato and Yōichi Taniguchi

Department of General Chemistry, Kurume Technical College, Komorino, Kurume

(Received in Japan 28 September 1973; received in UK for publication 5 November 1973) HOMOCYCLOPROPENIUM ions (n = 0), homocyclopentadienide ions (n = 1), homotropylium ions (n =1) and homocyclooctatetraene dianions (n = 2) are wellkown members of homoaromatic ions¹ possessing delocalizable $(4n+2)\pi$ electrons. Similarly, higher [4n]annulenes² can be successfully converted to the corresponding homoaromatic ions [$(4n+2)\pi$ systems (n = 4)] by acceptance^{3,4} or by loss of two electrons.⁵ Homo[4n+3]annulenones and the corresponding alcohols are also expected to be possible precursors of these homoaromatic ions.⁶

We report here spectral data supporting the formation of bridged homo[15]annulenium ion 13, a novel 14π homoaromatic ion, at room temperature in H_2SO_4 . Reaction of 2,15-dimethoxycarbonyl[15]annulenone 4,7:10,13-dioxide $\underline{1}^7$ with one mole of dimethyloxosulfonium methylide in DMSO at room temperature gave a ring expansion product $\underline{3}$ in an almost quantitative yield: molecular ion at $\underline{m}/\underline{e}$ 368 (M^+ C₂₀H₁₆O₇); ir (KBr) 2960 (v CH₂), 1695 (v C=0 ester), 1655 cm⁻¹(v C=0 ketone); UV λ_{max} (MeOH) nm (ϵ) 221 (14,700), 260 (25,500), 270 (24,700), 390 (29,200) and 430 - 445 (9,700). The nmr spectrum of <u>3</u> gave no sign of cyclopropane ring due to structure 2. A 2H doublet at τ 5.19 (J = 5.5 Hz), a 1H triplet at τ 5.78 (J = 5.5 Hz) and a 1H singlet at τ 2.51 were assignable to the allylic methylene, olefinic H-3, olefinic H-15 protons of 3, respectively. The observed high field shift of the H-3 proton is presumably due to the $\Delta^{2,3}$ The diester 3 was hydrolysed by dil. KOH (EtOH : $H_0O =$ trans configuration. 1 : 1) to give dicarboxylic acid 4 (orange yellow fine crystals, mp >300°, 82 The decarboxylation of $\underline{4}$ in quinoline at 170° for 15 min. in the presence %). of copper chromite yielded a hardly crystallizable reddish oil 5 in ca. 60%

yield, which was purified by thin layer chromatography (SiO2, ether).8 mass spectrum of 5 exhibited a molecular ion at $\underline{m/e}$ 270 ($C_{16}H_{14}O_{4}$), indicating one mole of $\rm H_{2}O$ was added to the expected decarboxylation product. The nmr spectrum of <u>5</u> exhibited 6H nonolefinic protons [the OH protons at τ 7.86 (s, 1H, disappeared on addition of $D_{2}O$), the allylic protons at τ 6.30 (m, 2H) overlapped with the H-3 methine proton, and complex multiplets at τ 6.5 - 7.3 ascribable to the methylene protons (2H, m)], as well as 8H olefinic protons [furan protons at τ 3.53 and 3.63 (2H, ABq, J = 3.5 Hz), furan protons at τ 3.70 and 3.75 (2H, ABq, J = 3.5 Hz), the H-9, 10 protons at τ 3.98 (2H, s), and the H-15,16 protons at τ 3.63 and 4.08 (2H, ABq, J = 12.0 Hz)], supporting the structure. The reduction of 5 with NaBH₄ gave 8, which was purified by column chromatography (SiO₂, CHCl₃), and recrystallized from aq. EtOH, mp 150 - 152°, pale yellow needles (47.5%); mass spectrum: $\underline{m}/\underline{e}$ 272 (M^+ , $C_{16}H_{16}O_4$); ir (KBr) 3180 cm⁻¹ (ν OH); UV λ_{max} (MeOH) 261 (14,800), 345 (5,200), 364 (5,800) and 382.5 (4,700). The nmr spectrum of $\underline{8}$ together with the spin decoupling well confirmed the structure [OH protons of 1,3 positions at τ 6.44 (s, 2H), olefinic protons (H-6, H-7, H-9, H-10, H-12, H-13, H-15 and H-16) at 7 3.50 - 4.32 (8H),

H-4 allylic methylene protons at τ 5.94 (2H, octet), methine protons at τ 5.40 (1H, H-1, m) and 7.03 (1H, H-3, m) and H-2 methylene protons at τ 8.00 (m, 2H). The UV absorption maxima of <u>8</u> have been shifted bathochromically by about 32 - 35 nm in its main bands compared with those of model <u>15</u>, while those bands have been shifted hypsochromically by 11 - 35 nm, when compared with those of model <u>14</u>⁹. This rules out a possibility that <u>5</u> and <u>8</u> may have type D chromophores.

The dehydration of 5 by TsCl/Me₂NH gave a small amount of dehydrated product $[\underline{m}/\underline{e} \ 252 \ (M^{+}, C_{16}H_{12}O_{3});$ ir (KBr) 3440 (v OH), 1680 cm⁻¹ (v C=O); UV λ_{max} (MeOH) 342 and 362 nm], but this compound was exceedingly unstable and polymerized rapidly on exposure on light and air. We tentatively assigned this compound to have structure $\underline{7}$. On the other hand, dehydration of $\underline{8}$ with a small amount of p-TsOH in MeCN at 60° for 6 min. proceeded quite easily to give a mixture of products, each of these were separated pure by thick layer chromatography on silica gel (ether). Four products ($\underline{9}$, $\underline{10}$, $\underline{11}$ and $\underline{12}$) were obtained, all of which exhibited same molecular ions at $\underline{m}/\underline{e} \ 254 \ (C_{16}H_{14}O_{3})$, indicating all of these are the monodehydrated products of $\underline{8}$.

The fastest moving band furnished a yellow oil <u>9</u>, which showed \vee C-O_{asymn}. at 960 cm⁻¹, and no \vee OH band, suggesting the formation of an oxetane ring, whereas the latter three well separated crystalline substances (<u>10</u>, <u>11</u>, and <u>12</u>) showed \vee OH absorptions at near 3430 cm⁻¹ [total yield ca. 85%, isomer ratio, 3.5:1.3:1.0:1.3, respectively], showing each of these is isomeric monodehydrated 16-membered heptaene alcohol [for UV data, see Table 1].

On dissolving the diol <u>8</u> in conc. H_2SO_4 , a deep blue colour developed, showing sharp absorptions at 334 (30,400) and 349 nm (33,000) [see, Figure lb]. The UV spectrum of this solution had a close resemblance with that of diatropic [15]annulenium tetrafluoroborate <u>16</u>.¹⁰ This seems to give a strong support for the existence of a homo[15]annulenium ion <u>13</u>. It is of interest to note that 13 exists stably only when it was produced in highly diluted concentrations. An attempt to take a well resolved nmr spectrum of this cation 13 has so far been unsuccessful due to the formation of an unidentified polymeric material.

REFERENCES AND FOCTNOTE

- P.J. Garratt and M.V. Sargent, "Nonbenzenoid Aromatics", Vol. II, Edited by J.P.Snyder, Academic Press., p. 207, 1971.
- 2) F. Sondheimer, Accounts Chem. Res., 5, 81 (1972).
- 3) J.F.M. Oth and G. Schröder, <u>J. Chem. Soc. B 1971</u>, 904.
- 4) J.F.M. Oth, H. Baumann, J.M. Jilles and G. Schröder, <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 3498 (1972).
- 5) J.F.M. Oth, D.M. Smith, U. Prange and G. Schröder, <u>Angew. Chem. internat.</u> <u>Edit.</u>, <u>12</u>, 327 (1973).
- 6) P.R. Story and B.C. Clark, Jr., "Carbonium ions", Vol. III, Chapter 23, 1007, Edited by G.A. Olah and P. von Schleyer, Wiley-Interscience, 1972, see p. 1089.
- 7) H. Ogawa, N. Shimojo and M. Yoshida, <u>Tetrahedron Lett. 1973</u>, 2013.
- In some experiments, compound <u>6</u> was isolated [mp 240°, mass spectrum, <u>n/e</u> 296 (M⁺, C₁₇H₁₂O₅)].
- 9) H. Ogawa, M. Kubo and I. Tabushi, Tetrahedron Lett. 1973, 361.
- 10) H. Ogawa and M. Kubo, <u>Tetrahedron</u>, <u>29</u>, 809 (1973).